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INTRODUCTION

Vectored w1nd velocity information is needed to accurately quantify high
velocity ordwnance ballistics, scattering of high energy lasers, optical
communication data rates in lower atmospheric scintillation, aircraft
vortex motion, and so forth. Due to the physical size of these events,
integrated wind measurements over long path lengths must be obtained.
Since direct wind metering devices are point measurement systems, they
must be used in an array ?Fig. 1). To design and operate an arrayed
system in a field environment, unique attributes must be engineered

into that system. At present, acoustic or propeller driven anemometers
are used to measure direct wind. Since acoustic devices are very
expensive from a per unit standpoint ($30,000), they were not consid-
ered for use in a multisensor arrayed system. The less expensive
propeller driven devices (less than $1,000 each) were chosen as the prin-
cipal transducer of the system. With this hardware restriction imposed,
the field array system should possess the following qualities:

Accurate, reliable measurement of wind velociti-as

Ability to support a large number of remote units over long path
lengths

Interactive operator control and automated operation
High dynamic range and the ability to inhibit ambiguous counts*

Low installation, maintenance, and servicing costs and easy fault
analysis

Low battery power consumption at remote units and minimal line
installation and maintenance times

Ability to function under severe environmental conditions
Ability to present data in a format suitable for digital analysis

Ability to maintain calibration in hostile environments

*An ambiguous count is induced by shaft oscillations about a point
where the oscillations are erroneously interpreted as complete shaft
rotation.
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txisting stand-alone propeller driven anemometer systems fall into these
two classes:

Analog: wind speed-to-shaft rotation-to-dc voltage conversion

tlectro-optical: wind speed-to-shaft rotation-to-electronic pulse
conversion.

Analog methods, though low power (i.e., a source rather than sink), are
prone to lose calibration, become corrupted with analog noise over long
transiiission paths, and require multi-input summing amplifiers to process
arrayed data or an A/D converter if computer analysis is required.
Although capable of maintaining calibration and signal integrity over
Tong path lengths, existing transistor to transistor logic (TTL) electro-
optical anemometer methods consume too much power for remote field use
(i.e., high power digital Tlogic), do not resolve the ambiguity problem,
and require custom communication interfacing if asynchronous array data
processing is to be allowed. Therefore, existing systems would not
satisfy the previously stated design objectives.

The decision was to design an electronic systeil which would possess as
many of the desired attributes as possible. To expedite the design pro-
cesses, the mechanical housing, bearing assembly, and propeller of an
existing analog anemometer were left intact. The dc motor was replaced
with an electromechanical system. The output of the anemometer device
was a pulse train in one-to-one correspondence with shaft rotations.
Calibration was performed in a low-speed wind tunnel or by use of manu-
facturer's supplied air screw information. Unlike the analog system,
which is prone to lose calibration due to amplifier drift and vari-
ability in a long low-grade analog communication channel, the digital
system will perform accurately over long periods of time; that is, the
anemometer will remain calibrated as long as the propeller and bearing
assembly remain structurely unchanged. The electronic signal produced
by the new transducer was processed by custom-designed low-power CMOS
hardware. The entire system was then interfaced to an asynchronous
communication line and microprocessor.

The developed system was capable of supporting up to 128 wind monitoring
stations (Fig. 2). Each station consists of battery power supply,
electronics, and three orthogonal anemometers (denoted U, V, and W
directions). Etach remote station was connected to an inexpensive low-
grade twisted pair of wires. The line drivers used were rated at

1 Abit/sec at 2.5 km. The system was controlled through the use of a
iational IMP-16-P microprocessor.
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SYSTEM ARCHITECTURE

A1l point-to-point data and control communication was accomplished
through a 20-bit word consisting of 16 bits of information and two
start and two stop bits. Conceptually, the developed system func-
tioned as follows:

The pulse train resulting from anemometer shaft rotations, includ-
ing direction, were shaped, preprocessed (scaled), and presented to an
up/down counter.

The up/down counter stored the algebraic count initiated with a
system clear-start request. This computer-issued command was received
by all remote stations siwultaneously.

The remote units were allowed to accumulate data over a user
supplied data collection interval. At the end of that interval, a
system-wide terminate command was issued to all stations.

The U, V, and W components of any on-line station were then
randomly accessed. This initiated a series of events which transferred
the appropriate wind component data from the chosen remote station to
a custom CMOS asynchronous serial transmitter. The parallel Toaded
data were then transmitted to the computer for storage and future
analysis.

In software, the current and previous counts from a randomly accessed
location are differenced. Windspeed can easily be computed from
knowledge of the differential count and the averaging interval.

In addition, the current U and V direction counts are compared against
4000,5. As long as the U and V counts are below this value, their
16-bit accumulators are assumed to be safe from overflowing during the
next averaging interval. If all randomly accessed U and V components
pass this test, no system-wide clear command is issued at the end of

the data acquisition sequence. The inhibiting of the clear command
releases more system time for actual data collecting. If the test fails,
a system-wide clear command is issued and counting resumes from zero.
Since the 12-bit W component accumulates only extremely low velocity
vertical wind information, no overflow sensing software test is provided
in this direction.

Figure 3 shows the mechanization of this design philosophy. Certain
hardware features of the system, whose implementation is unique to the
system developed, will now be investigated in detail.
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Hardware Consideration

Anemometer. Figure 4 shows the developed anemometer (not to scale).
The anemometer uses a shaft encoding disk to convert shaft rotations
into electronic pulses. The overlaping shots on the disk will create
distinctive pulse patterns for clockwise and anticlockwise rotations.
The two channels of optically sensed data are pnresented to the ambiouity
resolution circuit (Appendix). The count and sian information created
in the amhiauity resolver is sent to the scalina prenrocessor.

Scaler. The up/down counter used to accumulate the shaft rotation
counts was 16 bits in length in the horizontal U-V directions. Upon
computer request, the 16-bit count would be transmitted asynchronously
back to the computer. However, under high average wind conditions and
long averaging intervals, the up/down counter could easily overflow
within an averaging interval. To overcome the problem of inter-interval
overflow, a programmed divider, or scaler, was used. The division
options are 1, 2, 4, and 16. The user will initially specify a scale
factor. During execution, if the data are in danger of causing an over-
flow within an averaging interval, system software will automatically
cause the next largest scale factor to be implemented. Since vertical
winds (i.e., W direction) are of low velocity, no scaling hardware was
provided for this component.

Timing and Control. The developed system used a 1 MHz CMOS crystal
control clock. Sixteen clock pulse were used to define a data bit
interval. The resulting 62.5 kHz data rate exceeded an a priori design
acquisition rate of 0.5 second per system measurement. The reduced data
rate will also allow the system to communicate over lengths in excess of
5 km. If higher data rates were required, a higher master clock rate
could be used. However, the increased data rate would result in shorter
transmission lengths and increased power requirements (i.e., CMOS power
requirements are proportional to speed of operation).

Line Drives. The line drivers used were National 7831 {see the
insert diagram of Fig. 2).

Microprocessor. A National IMP-16-P microprocessor was interfaced
to the developed system through the use of tri-state logic. The computer
controlled the anemometer system through the issuance of scaling, termi-
nation counting, clear counters, and data request commands. Each compo-
nent of wind at each station was assigned a unique random access address.
The address was coded on an 8-pole DIP switch. An ASR-33 teletype was
used as a hard copy data logger, program input device, and operator
console. The operating system can be entered from paper tape or from
four 8 by 256 programmable read only memories (PROMS). Figure 5 is a
block diagram of the developed data acquisition software system.
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OPERATION

Once the system has been field assembled and the operating system loaded,
the operator initiates the program. Under the prompting of the computer,
the user enters calendar, time of day, averaging interval, total time,
and initial scaling information. The system will operate automatically
thereafter.

Line fault analysis is performed by issuing a clear, start count, transmit
data command to each remote address. Based on a 3 m/sec latency between
a start followed immediately by a stop count command, a wind of less than
100 m/sec will return a zero count to the computer. A line fault is indi-
cated by the reception of 177774. Since each remote station's position
is known on the communication line, the location of a line fault can be
easily determined.

RESULTS

A system as described in this work was fabricated and tested at Biggs
Army Airfield, E1 Paso, Texas, and at the University of Texas at

E1 Paso. The remote station was assembled on a wire wrap prototyping
board and mounted in a 9 by 9 by 3 chassis box. The computer inter-
face and control was mounted on a 144-socket prototyping 1/0 card.

The system has operated accurately and reliably during the initial
test phase. Anemometer calibration would normally be performed in a
lovw-speed wind tunnel. The developed system used the manufacturer's
propeller-to-wind speed conversion factor for calibration. The system
operated unattended for 30 days with a 6-V motorcycle battery at the
prototype remote stations. During the test phase, the ambiguity
resolution circuit asynchronous communication loop, automated overflow
protection software, and fault analysis performed successfully.

Data samples obtained during the evaluation phase are presented in
Figs. 6 through 8. The data are to be interpreted with respect to the
following format:

MONTH DAY ## ## jdentify
GMT: HRS MINS #4# ## experiment
TOT TM: HR MN ## ## total time
INTRVL: MN SC # ## averaging interval
DIV INDX ## ##t# division index
0000 = = 1
0001 = = 2
0002 = = 4
0003 = = 16
CALIB: +/-  ### - ### (+ or - nominal value)
12
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Data

Hour Minute S = U Component (M/S) S = V Component (M/V) S = W Component (M/S)

where

= <2 =
10a] i 10 ay + 10 a, + 10 a.

J

<

_>=a]a2a3a4a5=

During the prototype evaluation phase, the U, V, and W channels were
driven by a common anemometer. This technique was used because:

(1) successful U, V, W operation could be easily verified (i.e., all
three channels should present similar data), and (2) it reduced the
cost of building a prototype system since only one anemometer needed
to be fabricated.

The partial data base presented in Fig. 6 represents the result of a
5-minute experiment using 5-second averaging intervals. Calibration
data were supplied from manufacturer's suggestions, and the division
index was chosen to be 000 = 1. The wind value was near 3.6 msec.
Figure 7 describes another test performed under similar experimental
conditions, except the calibration factor was given a positive correc-
tion from its nominal value.

The partial data base shown in Fig. 8 represents an experiment with a
simulated high wind derived from a 16-inch fan. In the presence of high
winds, a division index of 0003 = 16 was chosen. The first test

(Fig. 8a) was perforiied with the anemometer in an upwind position for

5 minutes and the data logged (note the algebraically negative winds).
The program was reinitiated with the anemometer in a downwind position.
A1l but the first 5-second data record were positive. The first record
was negative because the anemometer was reversed during the first
5-second averaging interval of experiment described in Fig. 8b. The
absolute magnitudes of the winds (Figs. 8a and 8b) are different

because the anemometer was not in perfect orthogonal up and down wind
positions. The data presented in Fig. 9 represent a partial record of

a l-hour 30-second averaging interval experiment performed on

11 .lovember 1975 at Biggs Army Airfield, E1 Paso, Texas. The average
wWindspeed ranged from 7.616 m/sec at 14 hours 4 minutes 30 seconds GMT
to 2.145 m/sec at 14 hours 56 minutes 30 seconds GMT. For demonstration,
the rotor was manually blocked and rotated counterclockwise during
execution. Figure 9 shows results of these actions.

The W component found at 2 minutes 30 seconds into the experiment is
seemingly in error. The negative -38921 count is due to an overfiow
of the 12-bit W accumulator. No W component overflow protection was
provided (see item 5 of the system architecture description) since

vertical winds were assumed to be of low velocity. The actual wind

13




MONTH DAYQD
CHT:HRS MINTI6
TCT THU:HP 4ie0

INTPULIMN SCCQ
Dlv INLDY: 0000

CALIB:i+/-200-000

PPESS RN I
ecoce @S
eoceo e
elece 1S
eJcea 20
eonge 25
eceee 3@
a@oed 35

0000 40
ea2pe 4S
eoees  se
ezaeee  SS
aoeelr 0o
gocelr ©Ss
eeeolt 10
@eoo! 15
Figure 6.
UONTH DAYQ3

GAT:HPS MINSIG
TOT TM:H® 4N2Q
LITRVL:uN SC20
DIV INDX: @008

25
30
04
es

83569
23505
63505
23633
@3569
23505
R3ses
82569
83632
@3s05
83633
@3633
e2s0S
82633
glses

25
20
es
10

CALIB:+/-00p0+222

PPESS mMV!
eseca 1o
ceze2 20
eacze 20
eeceo a2
ccoee  se
eca31 eo

ce2 10
oezel 20
caze e
Ceez1l 40
aczel SO
cce22 02
gazc it
geeee 20
gosc2 20
Figure 7.

¢3826
elee6l
93722
02861
82931
¢ls2e6
elez26
23757
03157
03757
€3757
23931
03826
0826
03861

23569
@lu44l
02569
83569
83633
82505
23ses
83569
83632
@3535
@3€33
03633
23525
82569
83569

23826
23826
23757
e3esl
22931
elzze
23626
23757
83757
03757
03757
23921
e3c26
03826
23861

82569
e3ses
Q3ces
22633
03569
23505
@3s52s
03569
83633
03505
83633
23633
03505
83633
23585

Laboratory experiment.

@3826
2386l
23722
23861
223931
nleze
03826
23757
83757
03757
03757
23931
03826
03826
23861

Laboratory experiment.

14

)
i

T0 DDC DGES NU
GIBLE PRODUCTION

GOPY AVAILABLE
PERMIT FULLY LE




o

MONTH DAYQS
GATIHPS MINS20
TOT Ti:HR MNQO
iNTRUYLINN SCOQ
DIv INDX: 0003

CALlBi1+/-000~000
PRESS RIMI

1
17
0a
s

oce2e ©S - 38752 - 39771 - 38815
acoco 18 - 37732 - 37732 - 37732
acceo 1S - 37732 - 37732 - 37668
cocee 20 - 36712 - 36712 = 37477
gcoce 25 - 37732 = 37732 - 37158
00020 230 - 37732 - 37732 = 36967
20028 23S - 36712 = 36712 = 36712
00200 4@ - 36712 = 36712 - 37477
00C00 4% - 36712 = 36712 - 36393
#0C00 SO - 36712 = 36712 = 35947
€0008 SS - 36712 - 36712 = 36521
€0001 @8 - 35692 - 35692 = 35628
0coo1  os - 36712 - 36712 = 35333
coo0tl 1@ - 37732 - 37732 - 37158
oooci 1S - 36712 = 36712 = 36839
oco0l 20 - 36712 = 36712 - 36222
eoce) 2s - 36712 - 36712 - 36983
MONTH CAYE8 25
GAT:IIPS MINE28 28
TOT TMiNP MNZO Q4
INTPULIUN SCOO @5
DIV INDX: 0093
CALID:1+/-200+000
PRESS RINI
ceasa es -~ 25728 = 25728 = 45690
ezece 10 32633 32633 32951
63C22 1S 32633 33653 3z760
822308 20 38593 3059. 30657
22023 25 31613 21613 31677
2cco00 30 31613 31613 31358
00228 35 30593 30593 30466
20208 40 30593 30593 38529
0202¢ 4S 30593 30593 38721
c2e30 30 29573 29573 29127
c20ed  SS 29573 29573 3e220
ezeal 0o 36593 36593 3geel
ee22l @5 26554 26554 29382
eceal 10 28554 28554 28617
eceal 1S 29573 29573 29191
20001 20 28554 28554 29127
eoeel 25 29573 29573 29200
e0001 30 28554 28554 28617

Figure 8. Laboratory experiment.

GOPY AVAILABLE T0 DDO DOES KOi
PERMIT FULLY LEGIBLE PRODUGTION

15




e

MONTH LAY1]
GAT:HPS MINS13
TOT Ti1:ER MI01
INTFUL:Md SCEO
DIV INDX: GCGO

CALIC:+/-00G0GC0C0

19
58
0e
3e

PRESS PUN!
geoce 30 cas74
¢eect 0o 24865
2021 2@ 84716
geee2 ¢o Cu8g6
geees  2g L4599
geees 2o £5715
0goe3 32 C24029
eeggas €3 CZ000
ggec4s 22 €3290
gegecs 7 £2C30
20ces 2C c3248
eecce oC 7616
ee226 3¢ 55162
gzcer 3 saceg
eege7 ¢ - CCe24
22388 &C - 23435
00038 32 - gceueyg
e¢eec9 a2 C4279
geees 32 £s5226
20¢18 ¢ 24737
3 o
cee32 oe 23802
¢Be32 30 22379
00033 00 22676
CeB33 30 22443
g0e34 00 22591
¢ée34 30 83293
¢éB35 0o 02952
PeB35 302 03441
¢0@36 00 03909
22036 30 04886
o237 @8 B4u206
P0037 30 83335
b s H
¢oess 3@ 22299
20056 @0 £2623
000sS6 30 £E378
2ees7 00 gz2173
e2es7 30 gz1es
ccées8 03 ez¢e%8
gogs8 30 02889
0pes9 20 geze2s
gees9 30 LEESE
EID
Figure 9,

CL674
24865
Ba716
(VA
2453
5725
gl4€9
Q2200
20000
eezee
€3E4S
C7€16
cs1e62
gceoo
2435
ee43S
22414
C4279
5226
24727
—~
03802
2379
22676
2443
22591
23293
92953
23420
3930
24886
4206
93335
e

83399
23633
23378
g2273
g2145s
02698
22889
P2825
geevs

—
N

24674
QUEES
gu716
4897
38921 %
5715
034c9

9‘3@‘33R0T0R ROTATION

C0C o2
ED MAN
o eooc SSTOPPED MANUALLY

€2845
C7¢€16
25162
geeee

CCLZE M LOCKWISE
erace
ROTATION CAUSED

couss
ag79 MANUALLY

£5226
4737

23802
82379
02687
@2443
22591
03293
e2942
03441
03919
04875
24206
23335

23399
23632
03267
22273
g2145
02708
62889
22825
62687

Field experiment. BGPY AVA".ABLE -m DBG m}

PERMIT FULLY LEGIBLE PROD

£S W01
TH(RE

¥

i




- v o

MONTH Cay28 2%
GMT:HFE MINS20 10
TOT TJtHP ¥NO0O 07
ITPVLsIN SCOO 1@
DIV INDX: 0000

CALIBi1+/-000-000

PFESS RUN!
cooco 10 8344l 83aal 23473
ecooe 20 23569 23569 23537
0co00 30 83537 23537 82537
o0ce0 a0 e3ses 03s0s e2s2s
coeoo so 23537 83537 83537
$*EPPORess
ecoct o0 - 17623 - 17623 oeceo
= EFROR¢ e s
oeoel 1@ eceoe eecoo eeace
Qooet 2@ 29542 29542 11918
03dCct .Je 23473 03473 23473
cecol 4@ 23538 23535 23505
20001 S0 e3s27 83537 03537
eocc2 eceo 23569 83569 23569
00002 18 e36c) 03569 236081
coocc2 20 83632 el664 03633
®sERFQPese
w002 20 - 17878 - 17€78 eecoee
*+ETPOFsee
ca002 4@ ceaze egece oceeo
0J002 se 29988 29968 12110
i 20Cd3 @9 83569 © 83569 83569
' eecacy 1o 3537 83537 23537
00003 20 23523S 03508 e3scs
edcecy e 82473 83473 03472
00003 40 03508 @3ses e3s0s
20023 se 23569 03569 03569
aocla 20 03473 82473 83473
e ETPOPes s
oo0da e - 21096 - 21296 eacoe
eccra 20 28968 28968 07671
cocoa 32 03569 83569 03569
eolea  ap 23537 93537 @3569
ocoea se 63537 83537 93537
ca200S 0@ 23scs 83525 23508
0Jc0Ss 10 023s37 23537 0337
02205 2@ gl60d1 23621 Cleel
ecccs 3o 0244l ezaal 224al
00205 4@ 03409 €2439 23429
ooccs se 23537 05537 835837
eccos6 @0 03s¢s 23525 22505
eeed6 10 23s58s 02525 @3:ses
edeos 20 eleal alectl 33821
eoce6 30 63s0s 835€S 33cL
00036 40 23569 23569 023549
olecé6 SO 83537 03537 €3537
IND

Figure 10. Error detection.
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count loaded into the W direction accumulator was obtained from the
horizontally deployed anemometer. The high count found in this
direction caused the !! component to overflow before the U and V
component overflow test caused a system clear command to be issued.

Figure 3 dramatizes what would occur if a line fault were detected.
Juring execution, a series of line faults were induced and detected,
and the event was logged on the teletype. The system will detect
absence of count due to remote station failure, noise corrupting
framing code, or communication line failure.

CONCLUSIONS

The developed system satisfies the a priori design criterion. Instru-

ment flexibility was achieved through the use of a microprocessor.

microprocessor capability handled the electronic control and simple
logging responsibilities. It can also serve as a computer and a mas
storage device communications controller; therefore, the system can

The
data
S

be

integrated into a sophisticated meteorological data acquisition system.
The system has performed without fault over extended periods of time in

both laboratory and field environments. A new feature or modificati
the use of a magnetic proximity shaft encoder instead of an LED devi
is suggested for inclusion in any production model. This modificati
and the use of Tow power MOS line drivers would allow the system to
operate at a 25 Mi level.
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APPENDIX

Ambiguity Resolution Circuit

The ambiguity circuit which inhibits oscillatory shaft fluctuations
is described below.

|

g ———L:> e

SCHMITT D-TYPE ONE
TRIGGER FLIP- SHOT

sig B B1

o———-—{>~——r -

ol

CT

SN

The outputs of the photo-transistors, namely sig. A and sig. B

(Fig. 4), are the two inputs to the Schmitt Trigger A (MC14583) which
have built-in hysteresis for improved noise immunity. The output Al

is latched into the flip-flop B at the rising edge of A2. The fallin
edge of A2 is used to trigger the one-shot D(MC14528), which results

in a short pulse at the output of the one-shot. However, the output

pusle is inhibited if the state of Al (stored in the flip-flop B is

the same as Al at the falling edge of A2.

For normal rotation (Fig. 4b or 4c), the one-shot is enabled and a
clock pulse results at CT. However, if the anemometer shaft merely
oscillates about a point (Fig. 4d), the one-shot is disabled and a
no-count results.

The cutput § of the flip-flop is dependent on the direction of rota-
tion and will be HIGH for one direction and LOW for the other.
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